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1 Examples of Random Curves

1.1 Random interfaces

We will consider models of random growth, crystals, existence of multiple phases in various
settings of statistical mechanics. In many such examples, the model will be encoded by a
random interface (curve in d = 1, surface in d ≥ 2). Usually, such surfaces will be given
by a Gibbs measure. The static aspect usually involves understanding the Gibbs measure.
A Gibbs measures is naturally associated with a Markov chain (Glauber dynamics or heat
bath dynamics). The dynamical aspect involves understanding the Markov chain.

We will encounter:

• Hydrodynamic limits under suitable scaling of space and time

• Relaxation to equilibrium

We will begin by looking at some natural examples where we see interfaces appearing.

1.2 Exclusion processes

One example from interacting particle systems is exclusion processes.

Example 1.1. Take any graph, and suppose we have particles at some of the vertices of
the graph:
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Particles independently perform a simple random walk on the graph (in continuous or
discrete time, but let us focus on continuous time), respecting the exclusion constraint
that at every site, there can be at most 1 particle.

We will consider exclusion on Z:

This is known as the simple symmetric exclusion process (SSEP). Given a particle
configuration, one can construct a height function in the following way: Whether the
particle is at a site or not determines whether the increment of the function is +1 or −1.

We should think of the particles as living on the midpoints of each edge. How does the
height function evolve according to the dynamics? A particle moving to the right turns a
peak into a valley, and a particle moving to the left turns a valley into a peak.

In this example on a segment of Z with 8 sites, nearest neighbor paths of length 8 which
start and end at 0 are in bijection with particle configurations on 8 sites with 4 particles.
The stationary measure is uniform over all such paths. As the number of sites goes to ∞,
a uniformly chosen scaled random walk bridge looks like a Brownian bridge. The typical
maximum height of such a random path is

√
n, and we understand these paths well.

What do the dynamics look like? Look at the expected height h̃t = E[ht]. How does h̃
change with time?

h̃t+1(x)− h̃t(x) =
h̃t(x+ 1) + h̃t(x− 1)

2
− h̃t(x).

If instead of moving time forward by 1, we move it by some small amount, this tells us
that h̃t follows a partial differential equation:

d

dt
h̃t =

∂2

∂x2
h̃t(x).

So the expected height follows the heat equation.
If we look at the evolution of the actual height function, we get

d

dt
ht =

∂2

∂x2
ht + η(x, t),
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where η is space time white noise. This is the stochastic heat equation with additive
noise. This is a canonical example of a class of growth processes which share the following
features:

1. Local smoothening

2. Random forcing by noise which decorrelates in space-time.

This are known as the Edwards-Wilkinson universality class.

Example 1.2. The situation changes completely if we add bias. In the SSEP, the random
walks were symmetric. Consider a situation where a particle jumps to the right with
probability p and jumps to the left with probability q, where p 6= q. This is known as
an asymmetric exclusion process (ASEP). In the totally asymmetric exclusion
process (TASEP), p = 1 ad q = 0. This is equivalent to what is known as the corner
growth model. The TASEP evolves as follows:

What is the PDE governing the evolution? This is the Burgers’ equation: If we write
ρ := dh

dx , the equation is
∂ρ

∂t
= − ∂

∂x
ρ(1− ρ).

The key point is that this is a nonlinear PDE. A similar nonlinear PDE will appear as long
as p 6= q. These belong to the Kardar-Parisi-Zhang universality class, which contains
processes that exhibit

1. Local smoothing

2. Random focing

3. Local growth depending nonlinearly on the gradient.
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It turns out that the evolution can be described by the PDE

∂h

∂t
=
∂2

∂2
x

h+ (∇h)2︸ ︷︷ ︸
nonlinear flucuation

+η,

We will encounter non-Gaussian fluctuations such as Airy2 processes, Ferrari Spohn
diffusions, and more.

1.3 The Ising model

Example 1.3. In the theory of spin systems, the Ising model is a model of ferro-magnetism.
We have a lattice of sites, each of which can take the value +1 or −1. So our state space
is {±1}Λ, where Λ is an n× n lattice.

Then we consider the measure on this state space given by

P(σ) ∝ exp

(
−β
∑
u∼v

1{σu 6=σv}

)
, σ ∈ {±1}Λ,

where β is known as the inverse temperature. We will also consider a magnetic field λ
eventually.

It is well known that the Ising model exhibits a phase transition in β. If we look at
two different boundary conditions, we get two different measures for what the spin is at
the center σ0 of the lattice:
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What happens when β = 0? Then σ0 = ±1 with probability 1/2. What about happens
when β = ∞? With the + boundary condition, we have σ0 = 1 with probability 1, and
with the − boundary condition, we have σ0 = −1 with probability 1. There is a critical βc
such that for β > βc, the boundary has an effect uniformly in the box size and for β < βc,
the effect of the boundary decays exponentially in the box size.

If we take β > βc, look at a boundary condition which is + on the top half and − on
the bottom half. We will have the + phase mostly on top and the - phase on the bottom.
There will be an interface between these two phases.

Here is a simulation:
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